Resources

  • Niels M. Israelsen et al., “Real-time high-resolution mid-infrared optical coherence tomography,“ Light: Science & Applications 8, Article number: 11 (2019).
    https://doi.org/10.1038/s41377-019-0122-5
  • Khalil E. Jahromi et al., “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Optics Express 27, pp. 24469 – 24480 (2019).
    https://doi.org/10.1364/OE.27.024469
  • Søren M. M. Friis et al., ”Upconversion-based mid-infrared spectrometer using intra-cavity LiNbO3 crystals with chirped poling structure,” Optics Letters 44, pp. 4231 – 4234 (2019).
    https://doi.org/10.1364/OL.44.004231
  • Rasmus. L. Pedersen et al., ”Characterization of the NEP of Mid-Infrared Upconversion Detectors,” IEEE Photonics Technology Letters 31, pp. 681 – 684 (2019).
    https://doi.org/10.1109/LPT.2019.2904325
  • Dina Hot et al., “Spatially and temporally resolved IR-DFWM measurement of HCN released from gasification of biomass pellets,” Proceedings of the Combustion Institute 37, pp. 1337 – 1344 (2019).
    https://doi.org/10.1016/j.proci.2018.07.105
  • Lichun Meng et al., “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Optics Express 26, pp. 3850 – 3860 (2018).
    https://doi.org/10.1364/OE.26.003850
  • Lichun Meng et al., “Enhancing the detectivity of an upconversion single-photon detector by spatial filtering of upconverted parametric fluorescence,” Optics Express 26, pp. 24712 – 24722 (2018).
    https://doi.org/10.1364/OE.26.024712
  • Rasmus L. Pedersen et al., ”Comparison of an InSb Detector and Upconversion Detector for Infrared Polarization Spectroscopy,” Applied Spectroscopy 72, pp. 793 – 797 (2018).
    https://doi.org/10.1177/0003702817746635
  • M. Mancinelli et al., “Mid-infrared coincidence measurements on twin photons at room temperature,” Nature Communications 8, Article number: 15184 (2017).
    https://doi.org/10.1038/ncomms15184
  • Lichun Meng et al., “GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects,” Optics Express 25, pp. 14783 – 14794 (2017).
    https://doi.org/10.1364/OE.25.014783
  • Ajanta Barh et al., “Ultra-broadband mid-wave-IR upconversion detection,” Optics Letters 42, pp. 1504 – 1507 (2017).
    https://doi.org/10.1364/OL.42.001504
  • Peter Tidemand-Lichtenberg et al., ”Mid-infrared upconversion spectroscopy,” Journal of the Optical Society of America B 33, pp. D28 – D35 (2016).
    https://doi.org/10.1364/JOSAB.33.000D28
  • Lasse Høgstedt et al., “Upconversion-based lidar measurements of atmospheric CO2,” Optics Express 24, pp. 5152 – 5162 (2016).
    https://doi.org/10.1364/OE.24.005152
  • Louis M. Kehlet et al., ”Infrared upconversion hyperspectral imaging,” Optics Letters 40, pp. 938 – 941 (2015).
    https://doi.org/10.1364/OL.40.000938
  • Lasse Høgstedt et al., ”Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing,” Optics Letters 39, pp. 5321 – 5324 (2014).
    https://doi.org/10.1364/OL.39.005321
  • Christian Pedersen et al., ”Non-collinear upconversion of infrared light,” Optics Express 22, pp. 28027 – 28036 (2014).
    https://doi.org/10.1364/OE.22.028027
  • Qi Hu et al., “High-resolution mid-IR spectrometer based on frequency upconversion,” Optics Letters 37, pp. 5232 – 5235 (2012).
    https://doi.org/10.1364/OL.37.005232
  • Jeppe S. Dam et al., ”Room-temperature mid-infrared single-photon spectral imaging,” Nature Photonics 6, pp. 788 – 793 (2012).
    https://doi.org/10.1038/nphoton.2012.231